

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

By Jonathon Chard and
Bruce Powel Douglass

IBM Limited Edition

Agile Product
Development

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Agile Product Development For Dummies®, IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030‐5774
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc.

Manifesto for Agile Software Development, Copyright © 2001 by Kent Beck, Mike Beedle,
Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning,
Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas, (http://agilemanifesto.org)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748‐6011, fax (201) 748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used
without written permission. IBM and the IBM logo are registered trademarks of International
Business Machines Corporation. Scaled Agile Framework® and SAFe® are registered marks of Scaled
Agile, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc.,
is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS
WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in the
U.S. at 877‐409‐4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub. For
information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN: 978‐1‐119‐17736‐4 (pbk); ISBN: 978‐1‐119‐17737‐1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments
Some of the people who helped bring this book to market include the following:

Project Editor: Carrie A. Johnson

Editorial Manager: Rev Mengle

Acquisitions Editor: Steve Hayes

Business Development Representative:
Sue Blessing

http://www.wiley.com
http://agilemanifesto.org
http://www.wiley.com/go/permissions

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
Introduction .1

About This Book .. 1
Icons Used in This Book .. 2

Chapter 1: Why Agile Product Development? 3
A Brief History of Products ... 3
The Rise of the Internet of Things ... 4
Continuous Engineering for the Internet of Things 6
Defining Agile — the Agile Manifesto 7
Reinventing Agile for Product Development 8
Applying Agile to Product Development................................. 9
What’s In It for Me? .. 10

Chapter 2: Understanding Agile Product Line
Engineering .11

Increasing Competitive Pressure ... 11
What is PLE? ... 12
Core PLE Needs .. 13

Strategy ... 13
Interconnected engineering repositories 13
Traceability .. 14
Great configuration management 14

Techniques of Variant Management 15
Clone and own .. 15
Multi‐stream ... 15
Product parametrics ... 15
Feature management ... 16

Chapter 3: Agile Systems Engineering 17
Digging into the Challenges of Systems Engineering 17

System requirements specification 17
System functional analysis ... 18
System dependability analysis 18
Creation of a system architecture 18
Allocation of requirements to subsystems 19
Create hand-off specifications for downstream

 engineering ... 19
Agile Practices for Systems Engineering 19

Early verification of specifications 20
Test-Driven Development ... 20

Agile Product Development For Dummies, IBM Limited Edition iv

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Model‐Based Engineering ... 21
Incremental development ... 21
Continuous integration ... 22

Chapter 4: Doing it Agile .23
Agile Planning and Management .. 23

Plans are good (just don’t believe ’em!) 24
Plan to replan ... 24
Adopting existing processes .. 25

Tool Support in Agile Product Planning 26
Agile Requirements Management and Traceability............. 26
Agile High‐Fidelity Modeling and Simulation 27

Modeling is the language of product
architecture and design .. 28

Agile model construction ... 30
Simulation enables continuous verification 31

Agile Quality Management and Test 31
Continuous verification in product development 32
Simulation and test .. 32
Test management with changing requirements 33

Connecting Product Development to the IoT Cloud 33

Chapter 5: Scaling Agile Product Development 35
Scaled Agile Framework (SAFe) ... 36
Tooling for the Large Scale ... 37
OSLC and Enterprise‐Wide Agility ... 37
Aligning the Enterprise to Agile Culture 38
Getting Buy‐In Across the Organization 39
Starting Small .. 39
Leveraging Support.. 39
Using an Agile Process to Adopt Agile 40

Chapter 6: Ten Myths about Agile
Product Development .41

It’s a Fad .. 41
It Only Works for Simple Products .. 41
It Won’t Work for Critical Products 42
It’s Unproven .. 42
It’s Just a Technical Delivery Process 42
It Can’t Work for Non‐Software Engineering Teams 43
Quality Will Drop.. 43
The Business Won’t Know When Products

Will Be Delivered .. 43
The Business Won’t Know How Much Development

Will Cost .. 43
We Don’t Need to Change ... 44

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

T
he Internet of Things (IoT) is a phrase that is hardly out
of the headlines these days. Suddenly, there’s a headlong

rush to make every product and system instrumented, intel-
ligent, and interconnected to provide features and functions
that were science‐fiction only a few years ago. For consumers,
this is great news. Not only do you get cool new products, but
also the smart infrastructure that’s being developed using IoT
technology has the potential to improve lives. Smart trans-
port systems, smart health systems, smart energy grids, even
smart cities — the change is profound — and all around you.

But all of this change comes at a price for the companies
developing the connected products on which the IoT depends.
The complexity of development — and the expectations of
today’s consumers and markets — have never been higher. So
companies have to find a way to deliver a whole new level of
faster, better, cheaper — or risk getting left behind. And that’s
where agile product development comes in.

About This Book
Welcome to Agile Product Development For Dummies, IBM
Limited Edition. You’ve probably been hearing a lot about
agile software development for a good while — and now
people are starting to talk about using agile beyond software
for the whole product development process. You may well
be wondering whether that’s something you should be doing
and, if so, how to get started. If so, then relax; this book is
here to help.

The six chapters are organized to help you understand the
problem that agile product development sets out to solve and
how it solves it:

 ✓ Chapter 1 looks at the challenges facing product devel-
opers and the application of agile principles to tackling
those challenges.

Agile Product Development For Dummies, IBM Limited Edition 2

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 ✓ Chapter 2 highlights how strategic reuse through product
line engineering can work with agile processes to manage
the complexity of creating and maintaining families of
similar products.

 ✓ Chapter 3 discusses how systems engineering can adopt
agile processes.

 ✓ Chapter 4 digs into the details of implementing agile
product development processes, covering everything
from requirements management, through modeling and
simulation to testing and integration.

 ✓ Chapter 5 explains how to adopt and scale agile product
development, including how to gain buy‐in across your
organization by ensuring everyone sees the benefits.

 ✓ Chapter 6 helps you to avoid adoption pitfalls by sorting
some common agile product development myths from
the realities.

Icons Used in This Book
As you read this book, you’ll notice we’ve highlighted
 important information with some eye‐catching icons.

Tips are key things that make your life easier as you adopt
agile product development.

Remember icons are important ideas and approaches you
want to remember after you’ve finished reading.

Watch out for Warning icons. These are pitfalls and things you
want to avoid in your adoption of agile product development.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Why Agile Product
Development?

In This Chapter
▶▶ Understanding how increased product complexity and competition is
changing product design

▶▶ Looking at the Internet of Things as a driver for change

▶▶ Introducing continuous engineering

▶▶ Defining agile

▶▶ Reinventing agile for product development

▶▶ Applying agile to product development

▶▶ Understanding the benefits of agile throughout the organization

I
n the last few years, the term agile has changed from a
slightly geeky subject only mentioned between software

developers to a topic that’s discussed much more widely in
businesses developing technology products. In this chapter,
you discover some of the market forces driving that change
and what agile can offer for product development.

A Brief History of Products
Take a look around you. Chances are you can probably see a
product that has evolved dramatically from the version you
knew a few years ago — if such a product even existed back
then. A TV set has evolved from a device that was purely
analog, to a device that contained some software to make it
work better (auto‐tuning, remote control, and so on) to today’s
smart TVs where the software is the differentiating feature.

Chapter 1

Agile Product Development For Dummies, IBM Limited Edition 4

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Automobiles, washing machines, wrist watches — there’s an
endless list of products that have transformed from purely
mechanical to the new world of smart products. And the
phenomenon isn’t restricted to consumer products — from
 smartcard-enabled public transport to smart electricity meters,
smart traffic management systems to entire smart cities, every-
thing these day seems to be made better with software.

But all this extra software and functionality means more com-
plexity. You’ve probably seen statistics about how the soft-
ware in a typical automobile has gone from a few thousands
of lines of code to a few tens or even hundreds of millions
in just a few years. The bottom line is there’s just a lot more
stuff to engineer — and to get right. And the difficulty doesn’t
increase linearly with the size of code, size of electronics,
number of sensors, and so on. More complex products mean
bigger development teams, perhaps outsourcing parts of
development, integration with third‐party technology, supply
chain management, and so on. And as products do more, the
potential to go wrong is greater. If those failures have signifi-
cant safety or financial implications then they may, in time,
lead to more regulation of the product, adding layers of com-
pliance to the development activity.

Then there are market and customer expectations. Daily
updates from the app store have everyone used to the idea
that software-based products continually evolve and improve.
And that sets your expectations for connected products.
Because defects can often be fixed through online updates,
you also have high expectations of quality — and you often
turn to social media to vent your dissatisfaction if your expec-
tations aren’t met, with negative consequences for the product
manufacturer’s brand. All this means the pressure on product
developers to keep ahead of their competition has never been
greater, driving the race for ever faster design cycles.

The Rise of the Internet
of Things

In looking beyond this trend of rising software complexity
(intelligence) in products, you may notice two other key
changes:

 Chapter 1: Why Agile Product Development? 5

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 ✓ Products are becoming more instrumented. Low‐cost
sensors, such as cameras, microphones, accelerometers,
temperature and pressure transducers, and GPS location
receivers, are allowing products to monitor and react to
their environment.

 ✓ Products are becoming more interconnected. Through
wired or wireless connections many products are no
longer standalone devices, and the functionality and
value they provide often depend on the wider system in
which they operate.

These combined trends of intelligence, instrumentation, and
interconnection now have a name: The Internet of Things (IoT).
In some ways, the IoT isn’t new; people have been connect-
ing software‐controlled products with sensors to each other
and to networks for a while. But the appearance of the name
“Internet of Things” signifies a general acceptance of the enor-
mous value of this approach — and is fueling a rush to exploit
its potential.

The IoT is the ability to connect all those “Things” to the
cloud, where analytics can make sense of all the data they
generate. This process enables a number of major benefits:

 ✓ The data can yield new functionality and value. Think
of the real‐time traffic congestion data your vehicle
navigation system uses, derived from the GPS sensors in
smartphones.

 ✓ The data can provide operational performance feed-
back. Think of the jet engine manufacturer that can
use engine operational telemetry to inform predictive
maintenance and allow the business to move from a
pure product manufacturing model to a more profitable
power‐by‐the‐hour model.

 ✓ The data can yield rapid, detailed, and complete
insight into user experience and product performance.
This can inform the design of new and updated products.

In an IoT world, making the “Things” has moved from a linear
specify‐design‐manufacture‐sell cycle to a “closed loop”
iterative activity in which the information driving product
revisions comes not from painstaking market research and
test lab results but in near real‐time from the products them-
selves. And users increasingly expect the product they buy

Agile Product Development For Dummies, IBM Limited Edition 6

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to be painlessly upgraded throughout its life through new
software delivered through the network. This can only inten-
sify the increase in product complexity and the demands for
faster delivery and higher quality.

Continuous Engineering for
the Internet of Things

Many makers of “Things” have struggled for some time with
old fashioned, siloed, waterfall ways of engineering products.
Each added layer of complexity leads to more problems and
unscheduled rework at the end when the components are
integrated. And maintaining, let alone improving quality in
the face of ever shortening development cycle times, is all but
impossible.

IoT only makes the situation worse for makers and demands
a fresh approach to product engineering that’s designed for
the closed loop of IoT product development. Continuous engi-
neering is that fresh approach and brings with it a number of
practices for more sustainable working in a closed loop devel-
opment world:

 ✓ Strategic reuse: Intelligently reusing engineering artifacts
wherever it is efficient to do so. Strategic reuse goes
beyond clone‐and‐own approaches (with their atten-
dant proliferation of data and maintenance issues). It
encompasses the concept of product line engineering —
 defining product configurations and variation points —
so that the common parts of a family of products can
be engineered in one stream, and only variant parts are
engineered separately.

 ✓ Continuous verification: Verifying artifacts as they’re
created instead of the traditional end‐of‐cycle approach
and repeating verification at every change to ensure that
quality is built‐in throughout development.

 ✓ Engineering insight: Using integrated tooling, processes,
and analytics to break down siloes of information and
help engineers and project teams to make rapid, optimal
design decisions that continuously drive the design in
the right direction.

 Chapter 1: Why Agile Product Development? 7

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous engineering isn’t a process; it’s a set of principles
that can guide the application of the detailed processes for
doing the design. You still need an approach for the detailed
processes — and that’s where agile comes in.

Defining Agile — the Agile
Manifesto

The 2001 Agile Manifesto is the definition of agile for software
development and proposes four basic tenets:

 ✓ Individuals and interactions are preferred over tools and
processes.

 ✓ Working software is preferred over comprehensive
 documentation.

 ✓ Customer collaboration is preferred over contract
 negotiation.

 ✓ Responding to change is preferred over following a plan.

These tenets are further elaborated by 12 supporting agile
principles:

 ✓ Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

 ✓ Welcome changing requirements, even late in develop-
ment. Agile processes harness change for the customer’s
competitive advantage.

 ✓ Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

 ✓ Business people and developers must work together
daily throughout the project.

 ✓ Build projects around motivated individuals. Give them
the environment and support they need, and trust them
to get the job done.

 ✓ The most efficient and effective method of conveying
information to and within a development team is face‐to‐
face conversation.

Agile Product Development For Dummies, IBM Limited Edition 8

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 ✓ Working software is the primary measure of progress.

 ✓ Agile processes promote sustainable development. The
sponsors, developers, and users should be able to main-
tain a constant pace indefinitely.

 ✓ Continuous attention to technical excellence and good
design enhances agility.

 ✓ Simplicity — the art of maximizing the amount of work
not done — is essential.

 ✓ The best architectures, requirements, and designs
emerge from self‐organizing teams.

 ✓ At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.

The manifesto was written from the perspective of software
development; however, agile is essentially an approach for
maximizing success when doing complicated projects. That
means agile thinking can be applied to non‐software activities.
In fact, software is mentioned only once in the four tenets and
three times in the 12 principles. It’s also important to note
that neither the tenets nor the principles are a set of hard and
fast rules. They are written in terms of priorities, values, and
preferences. This leaves room to adapt how you implement
agile for your needs while providing points of reference as
to what’s likely to improve the outcome. So while a working
deliverable is valued more than complete documentation, if
you need that documentation to comply, for example, with a
mandatory standard, it’s still an important part of the project.
And while face‐to‐face communication may be highly valued,
using effective collaboration tools across a globally distrib-
uted team is another way to follow the principle in a complex
product development environment.

Reinventing Agile for Product
Development

Software developers hit the cost‐time‐quality‐complexity
wall a few years back. Their response to this crisis, in many
cases, was to move to agile software development. Certainly
this happened for enterprise and IT software developers. And

 Chapter 1: Why Agile Product Development? 9

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

more recently, as embedded software has become an ever
more vital part of many products, embedded software devel-
opers have increasingly turned to agile.

The challenge for embedded software, however, is that it’s part
of a product, and that frequently comes with responsibilities.
The environment in which it runs might be hardware‐ specific,
have real‐time operating constraints, limited processing and/
or battery power, and so on. Those characteristics may change
when the product hardware is changed. In short, embedded
software engineers have to pay attention to other parts of
product development. This can cause problems when embed-
ded software development is agile and the rest of product
development is waterfall — with its “big up‐front design” and
“test it at the end” philosophies at odds with agile flexibility
and responsiveness.

But what if product development could become agile? With
agile driving product development, you can start to deliver
the development responsiveness that the IoT demands while
managing complexity and improving quality and cycle times.

Applying Agile to Product
Development

Software development was hitting its “cost‐time‐quality‐
complexity crunch” around the time (some would argue a
good while before) the agile manifesto was written. Back then
people didn’t have smart products and the IoT. But now they
do, and it’s the turn of product development to look for new
approaches.

Agile approaches have a number of general benefits that make
them attractive not only to software developers but also to
systems engineers and product development teams:

 ✓ By fostering ongoing collaboration with customers and
openness to change, project outcomes can be more
closely aligned to customer needs.

 ✓ Through incremental delivery of working parts of the
system projects can achieve greater certainty of delivery.

Agile Product Development For Dummies, IBM Limited Edition 10

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 ✓ Through early detection of errors and defects and
rapid customer feedback on delivered functionality,
the late‐stage risk to projects can be reduced, which in
turn reduces the need to dedicate time and money to
unscheduled rework.

 ✓ By eliminating unnecessary work, agile projects can
achieve sustainable high productivity.

What’s In It for Me?
The reason to use agile for product development is to gain
some quantifiable benefits. So it’s important to understand
what those benefits are — and critically, which stakeholders
in the business receive those benefits.

The good news is that agile product development has poten-
tial benefits for a very broad range of stakeholders:

 ✓ At a business level, agile can help meet commercial
objectives by delivering higher quality products faster,
at reduced cost.

 ✓ At an operational and project management level, agile
can help improve project management by increasing the
predictability of delivery and the responsiveness of a
development organization to necessary change.

 ✓ At a practitioner level, agile can increase satisfaction by
giving engineers greater autonomy and direct measures
of progress in their work, and by reducing rework, which
allows them to spend more time focusing on innovation.

It’s important that agile delivers benefits across all levels of
an organization as successfully implementing agile product
development needs support from all those levels.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Understanding Agile
Product Line Engineering

In This Chapter
▶▶ Looking into competitive pressure

▶▶ Defining product line engineering

▶▶ Listing the core needs for product line engineering

▶▶ Understanding the techniques of variant management

E
ngineering knowledge is captured in intellectual property
(IP) in various work products generated during product

development, including requirements, architecture, trade
analyses, test cases, safety analyses, security threat models,
designs, implementation, and so on. That’s a lot of IP, and it
represents a huge investment of both money and time. As new
products are built to address new markets or industry seg-
ments, all this IP should be reused efficiently and effectively.
This is the subject of this chapter.

Increasing Competitive Pressure
Companies are driven by a number of forces:

 ✓ Product complexity: It’s a well-known aphorism that
products are getting more complex. In automobiles, the
average lines of source code (a perhaps poor measure
of complexity but something easy to measure) has gone
from 2.4 million in 2005 to 10 million lines in 2010, while
luxury automobiles may have as many as 100 million.

Chapter 2

Agile Product Development For Dummies, IBM Limited Edition 12

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 ✓ Need to decrease time to market: Despite the increasing
complexity and design challenge for modern products,
market windows are getting shorter. This means that the
design and develop cycles must also shrink.

 ✓ Drive to reduce development costs: As product market
windows become shorter, development costs can have
an increasing impact on corporate profitability. For this
reason, companies are often looking to increase engineer-
ing efficiency.

 ✓ New markets: Internationalization has opened new
 markets for many companies while technology has cre-
ated other opportunities, particularly as new smart tech-
nology replaces traditional infrastructure. Emphasis on
being “green” for example, has created entirely new mar-
kets for power systems, and energy efficient motors.

 ✓ Market fragmentation: Formerly known as niche markets,
larger markets are being fragmented by the special needs
of smaller market shares and the clamor to have those
needs met.

 ✓ Increasing reliance on smart systems: Many previously
manual critical systems are being replaced with smarter
systems. While this cuts costs and improves system
performance, in the absence of human oversight, subtle
defects in critical systems can result in catastrophic
 outcomes.

All of these forces mean that companies must be able to
 produce much more capable systems in less time. And the
fact that people increasingly rely on these systems means that
they need to get them right.

What is PLE?
Product Line Engineering (PLE) is a disciplined approach
to constructing a family of products that have commonality
in terms of their engineering data. This originated from an
 earlier discipline called Software Product Lines (SPL) and has
been generalized to product development.

The goal of PLE is to produce product lines with a high degree
of reuse of all appropriate engineering data. Many companies
produce products that are highly similar, and it makes sense

 Chapter 2: Understanding Agile Product Line Engineering 13

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to reuse the engineering data from previous systems to make
new ones. The Software Engineering Institute (SEI) reports
that SPL has resulted in “order of magnitude improvements in
time‐to‐market, cost, productivity, quality, and other business
drivers.” (https://www.sei.cmu.edu/productlines/)

Although PLE can be used for opportunistic reuse, it’s best
applied to a planned product portfolio. Your product portfolio
identifies the market segments you want to address and the
products you will create to do it. PLE is then an effective way
to actually implement your product lines via the strategic
reuse of IP.

What isn’t obvious is how to implement such a solution.
Most engineering data is in stovepipe applications and not
organized to facilitate reuse. It isn’t clear what assumptions
are made so it’s hard to understand what can be reused and
where. Furthermore, if you reuse engineering data, such as
requirements, and a defect is identified in a product later,
how do you identify which variants may be affected?

Core PLE Needs
Effective product line development requires you to manage
large amounts of engineering information. To get started with
any PLE implementation, you first need some underlying strat-
egy, processes, and tools to aid in the creation and manage-
ment of reusable IP assets.

Strategy
Various methods and workflows can be used to implement
PLE, and they all have benefits and costs. However, because
PLE is larger than a single project, it’s imperative that dif-
ferent teams approach PLE using the same workflows and
methods.

Interconnected engineering
repositories
People generate a lot of engineering data of many kinds in a
typical product development cycle, including

https://www.sei.cmu.edu/productlines/

Agile Product Development For Dummies, IBM Limited Edition 14

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 ✓ Stakeholder and system requirements

 ✓ Software/electronic/mechanical requirements

 ✓ Systems architecture and trade studies

 ✓ Software/electronic/mechanical designs and
 implementations

 ✓ Safety/reliability/security analyses

 ✓ Test fixtures and test cases

The different engineering data sets are managed by special-
ized tools, but they must all be connected. You must be able
to clearly identify a coherent set and version of the system
requirements that are used to develop a specific version of
the architecture. You need to be able to identify which test
cases apply to which product variants. This requires integrat-
ing the repositories of engineering data to form working sets
for specific products and product variants.

Traceability
A key facility to interconnect the engineering data sets is
traceability. Traceability identifies the links between indi-
vidual elements in those engineering data sets. For example,
requirement R1 might trace to architectural elements A15 and
A22 and to test cases T155, T156, T158, and T436. Software design
element SWD17 and electronics design element ED89 might
collaborate to meet the safety analysis SA44. Traceability is
important in PLE because multiple variants of work products
differ in subtle but critical ways. It provides the detailed rela-
tionships between data elements required to maintain mul-
tiple product variants simultaneously.

Great configuration management
World class configuration management is a core capability to
support PLE. A number of different work streams (also known
as branches) can divide or merge multiple times within a prod-
uct portfolio. Management of such complexity isn’t easy, but
the benefits of doing it well pay off.

 Chapter 2: Understanding Agile Product Line Engineering 15

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Techniques of Variant
Management

Reuse is harder than it sounds because PLE involves reusing
many different kinds of engineering artifacts. And, because
you’re creating variants, you’re reusing some data and also
creating new data. A number of techniques exist for imple-
menting PLE with different levels of sophistication, offering
different benefits.

Clone and own
In this approach, information is simply copied and modified
to create the required variant. Although this is initially easy, it
results in duplication of data and divergent systems. The com-
plexity of managing changes and fixing defects across variants
with isolated data sets makes this approach unsuitable for
supporting an agile product development approach.

Multi‐stream
In the multi‐stream approach each component — both core
and product variant-specific components — has a defined set
of engineering data (requirements, design, and so on) and is
managed in a stream to account for changes and fixes. New
product variants are constructed by taking most or all of the
core platform and adding in new components that define the
product variant. This allows for more opportunistic reuse.
Branching the streams of the components is the primary
means for variant management.

Product parametrics
Parameters can be used to identify the variant to be con-
structed. An automotive PLE model, for example, might have
parameters for the engine to be used (United States, Europe,
Asia, rest of world), the drive train (economy, performance,
4x4), which trim level (basic, advanced, luxury), and the info-
tainment system (basic, enhanced, premium). This defines a
large set of potential variants, not all of which must be pro-
duced; there might not be a need for a 4x4 car with an Asian

Agile Product Development For Dummies, IBM Limited Edition 16

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

engine, basic infotainment, and luxury trim, for example. The
parametric approach makes it easy to add new variants that
fit within the pre‐planned variability modes (as expressed by
the parameters) but less easy to do true ad hoc reuse.

Feature management
In feature management, the reusable pieces are organized
around product features. Each feature has its own set of inte-
grated work products and engineering data and may also pro-
vide internal variants of the features based on parameters or,
more likely, multiple streams.

Common to all approaches (except clone‐and‐own) is a high
degree of modularity and the separation of the things that
don’t change (known as the core platform) from the things
that change in the different variants. Each of these modular
pieces is a component supported by a coherent set of engi-
neering data. Figure 2-1 shows the relationship between the
core platform, products, components, and their underlying
data.

PLE is a key element of agile product development because
the structured approach to modularity and reuse it promotes
helps to support agile’s dynamic refactoring, reprioritization,
and responsiveness to change.

Figure 2-1: The PLE solution.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Agile Systems Engineering
In This Chapter

▶▶ Looking at the challenges of systems engineering

▶▶ Understanding key agile practices for systems engineering

A
s products get smarter, new and more effective prac-
tices and technologies are needed to help you meet the

challenges posed by their development. Systems engineering
becomes even more fundamental in ensuring that your prod-
uct concepts meet stakeholders’ needs and product architec-
tures can be effectively implemented. In this chapter, you see
the key activities of systems engineering in product devel-
opment and how agile practices can be applied to improve
 systems engineering.

Digging into the Challenges
of Systems Engineering

Systems engineering focuses on capabilities and constraints
at the systems level, above the more specific concerns of
software, electronics, and mechanical implementation. The
primary tasks for systems engineering include the challenges
listed in this section.

System requirements specification
The System Requirements Specification (SRS) is a mostly tex-
tual document that defines the required behaviors and qualities
of service of a system. Although the use of requirements man-
agement tools such as IBM Rational DOORS and RequisitePro

Chapter 3

Agile Product Development For Dummies, IBM Limited Edition 18

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

have improved the management of the requirements of com-
plex systems, SRSs are often — if not usually — plagued by
requirements that are incorrect, incomplete, inadequate, and
inconsistent. This remains a key challenge for systems engi-
neering that traditional approaches have improved on but
failed to eradicate.

System functional analysis
System Functional Analysis (SFA) is the transformation of the
system requirements specification into a coherent functional
description of the system, which can form the basis of the
functional and system architecture. It involves analyzing the
functional needs of a system to both validate the require-
ments specification and to uncover requirements that are
missing or problematic.

System dependability analysis
In today’s smarter world, the various aspects of depend-
ability — safety, reliability, and security — are becoming
increasingly important. While these concerns fall within the
umbrella of systems engineering, they’re usually managed by
specialists. These analyses are used to ensure that require-
ments adequately address the dependability needs of the
system, architectural and design choices are compatible with
these needs, missing requirements are identified, and the
“safety case” has support when the product is submitted for
approval by a regulatory agency.

Creation of a system architecture
The system architecture creation activity focuses on the
identification of large‐scale pieces (“subsystems”) of the
overall system, their responsibilities, their interfaces, and the
allocation of requirements they must support. The system is
usually not yet decomposed into engineering disciplines (for
example, software, electronic, mechanical, pneumatic, and
hydraulic).

 Chapter 3: Agile Systems Engineering 19

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Allocation of requirements
to subsystems
In preparation for subsystem development, requirements
must be allocated to subsystems prior to their being handed
off to teams or subcontractors for development. These
requirements must be consistent with the overall system
requirements and often must result from the decomposition
of system requirements into derived requirements.

Create hand-off specifications
for downstream engineering
Traditionally, the output from systems engineering is a large
set of textual documents that, even though manually reviewed,
contain various errors that lead to significant rework late in
the project. Part of the problem is that there’s no way to auto-
matically ensure that the textual statements are correct or
even consistent with each other. The most common approach
today is to hand off these hundreds or thousands of pages of
textual specifications, errors and all, to the subsystem teams.
The subsystem team must then cast this information into a
format consumable by their tools and processes before pro-
ceeding. This is an open‐loop approach that results in both
low quality and high cost.

Defer implementation decisions as long as possible to give
the maximum amount of flexibility for downstream design and
implementation. With the advent of the Systems Modeling
Language (SysML) and high‐fidelity, model‐based engineering
(Hi‐MBE) tools, the modern systems engineer can be more
effective in accomplishing his tasks.

Agile Practices for Systems
Engineering

The purpose of software engineering is very different from
that of systems engineering. The former is to produce deliver-
able implementation while the latter is to develop specifica-
tions. The application of agile to systems engineering must
take this into account.

Agile Product Development For Dummies, IBM Limited Edition 20

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A number of key practices can be effectively applied to sys-
tems engineering, including execution of specifications, test‐
driven development, model‐based engineering, incremental
development, and continuous integration.

Early verification of
specifications
A key tenet of agile is that you ensure quality of a work prod-
uct by verifying it as you create it (rather than some weeks
or months after the fact). In the pursuit of quality, you need
direct evidence of completeness, accuracy, and consistency
of the system engineering work products. This means you
need to “test” the specification. Using a more formal language,
such as SysML (and appropriate tooling such as IBM Rational
Rhapsody), to create executable specifications means that
you can simulate the system behavior, allowing demonstra-
tion of its functionality under different circumstances. The
more traditional alternative of reading hundreds of pages of
text is a poor substitute.

SysML supports the precise specification of engineering data
and is executable. The Rhapsody TestConductor Add On
applies the methods of model‐driven testing to systems engi-
neering specifications.

Test-Driven Development
The practice of Test‐Driven Development (TDD) is common
in agile software development. It entails the development of
test cases at, or slightly before, the development of some unit
of software, and the immediate application of those tests.
Unit level testing is performed incrementally, usually several
times per day during 20‐ to 60‐minute “nanocycles” to ensure
that the evolving software baseline is defect-free. The same
approach can be applied to the development of executable
specifications. As some set of related requirements are added
(resulting in the addition of a few states, transitions, and
system actions), test cases can be constructed to ensure that
the added capabilities are properly specified. Compared with
a test‐at‐the‐end approach, TDD significantly improves quality
and reduces rework.

 Chapter 3: Agile Systems Engineering 21

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

System specifications can be extremely complex. Building
them up in tiny increments — with highly frequent testing —
is a key practice to ensure that your system specifications are
complete, consistent, accurate, and correct.

Model‐Based Engineering
Model‐Based Engineering (MBE) doesn’t remove textual
requirement specifications but augments it with high‐fidelity
models (discussed in Chapter 4) that allow you to reason about
the specifications that you’re creating. SysML was created for
exactly this purpose. MBE allows you to explore requirements
in ways that ambiguous textual specifications don’t, and when
you couple this with building executable specifications and
TDD, you can construct superior specifications over using text
alone. In addition, traceability between the modeled specifi-
cations and the textual requirements can be used to ensure
coverage of all requirements and also assist in impact analysis
when these requirements change.

Incremental development
Another key concept for agile systems engineering is the incre-
mental development of the system work products, and this
includes requirements, architectures, and dependability speci-
fications. This incremental development occurs at two levels.
First, you can incrementally construct your specifications by
working on one coherent set of requirements at a time. The
most common way to perform MBE with SysML is to group
requirements into use cases (or user stories) and work out the
functional (and non‐functional) requirements as well as their
interactions. Each use case then forms an increment of the
system specification.

Second, at the smaller scale of incremental development, each
use case specification may itself be complex and subtle. At this
nanocycle level of systems engineering, the state‐based behav-
ior of the system use case can be developed using smaller
increments. These nanocycle increments usually require 20 to
60 minutes and add some incremental piece of functionality
that is then executed and tested for correctness. Many nanocy-
cles are required to complete the specification for a use case.

Agile Product Development For Dummies, IBM Limited Edition 22

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Similarly, when architectural concepts are defined, the
requirements can be allocated a use case at a time and the
architecture validated by execution before adding the next.
In this way, the subsystem interfaces (and the corresponding
Interface Control Document, or ICD) can be incrementally con-
structed as well.

Continuous integration
If different teams are working on different use cases simulta-
neously, it is important that the requirements specified for
one use case don’t conflict with the requirements for another.
This problem can be eliminated though a practice known
as continuous integration in which the work from different
engineering teams is brought together and tested to ensure
consistency. This approach identifies conflicting requirements
early at a much lower cost than in more traditional develop-
ment life cycles.

The key to effective systems engineering is to verify the engi-
neering data in the produced work products. This requires
testable and simulatable models representing that data in a
precise and verifiable way.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Doing it Agile
In This Chapter

▶▶ Making effective agile plans

▶▶ Incorporating existing agile methods in your product development

▶▶ Managing continuous verification with high‐fidelity models and
 simulation

▶▶ Connecting product development with the IoT Cloud

A
gile methods have come about in the context of small
teams building small non‐critical software applications.

So how do you actually apply agile approaches to the develop-
ment of much larger scale systems that include electronics
and mechanical aspects as well, and may be critical? This
chapter addresses the “how.”

Agile Planning and Management
Processes identify tasks and their properties, task execution
sequences, time frames, work products to be produced, roles,
and allocation of personnel to roles. Plans serve as a project
roadmap so people can coordinate their activities and esti-
mate project properties (such as completion date and devel-
opment costs). Process definitions describe general flow,
work products, and roles and must be instantiated for specific
projects. A process definition may have a workflow for analyz-
ing a use case, but you have to apply it to the use cases for
your current project and all its special characteristics.

That means that process definitions include tasks that may be
relevant in a particular case but not in your specific project.
Additionally, the process definition may omit a task or work
product that’s relevant in your case. In any event, you must

Chapter 4

Agile Product Development For Dummies, IBM Limited Edition 24

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

tailor the application of a process definition to your particular
project — and that is your project plan.

For example, your process definition may say that you need
to create a software design document for a subsystem, but
if that subsystem has no software in it, that task is useless.
Alternatively, the process may not require you to produce a
DO-178 compliant test coverage analysis, but your product
requires FAA certification — so you must create one.

It is far more important to do what’s relevant and important
for your project than to blindly follow a generic prescription
that may not completely apply in your case. You should pri-
oritize tasks by the value they deliver and plan no task with
costs greater than the value delivered.

Plans are good (just don’t
believe ’em!)
The reason why you plan is so you can determine when to
start and stop other activities — such as manufacturing,
marketing, or even other projects — and so you can estimate
the cost and time associated with the product development.
Plans allow you to make good business as well as technical
decisions. However, product development plans are always
an exercise in estimating things you don’t actually know. It is
common to spend considerable effort in upfront planning well
beyond any reasonable expectation of true accuracy and then
dogmatically require adherence to this plan.

Plans always have errors (some more than others). Some
errors are due to estimates that prove to be inaccurate. Some
errors are due to the fact that your assumptions weren’t met
(such as assuming a certain amount of work is done per unit
time, known as velocity). Other errors are due to the inevita-
bility that some of the things you know now will change in the
future (“We didn’t mention that it needs tail fins?”). So, never
plan beyond the extent of your knowledge.

Plan to replan
If you pay attention during project execution, you can detect
when project execution deviates from the plan. This might

 Chapter 4: Doing it Agile 25

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

be due to an overestimation of engineering velocity, the dif-
ficulty of getting sample parts, the unavailability of key sub-
ject matter experts . . . or anything else. However, once you
detect a deviation from the plan, the plan should be updated
to reflect what’s actually going on. You can change the plan to
account for new information, such as the measured velocity of
engineering staff or a new schedule for sample parts delivery.

Plans are only useful if you actually follow them. If you’re
doing something other than what was planned, you have
really no idea how late or early you are. Rather than merely
change what you do, you should update the plan to reflect
what you’re doing. Plans should be updated at least several
times per iteration.

To make sure you use plans effectively throughout your
 projects, keep a few things in mind:

 ✓ Plans are always wrong. No plan is completely accurate
because there are things that you don’t know that you
are estimating and because things you do know change.

 ✓ Instrument your projects with metrics. Monitoring the
project status and comparing it to the plan allows you to
make better plans.

 ✓ Adjust your plans frequently. Assess the gap between
the planned and measured project status and update
your plans frequently to reflect “truth on the ground.”

 ✓ The point of planning is to guide and coordinate work,
not to motivate. Too many organizations use plans to
instill urgency in their workers rather than to depict proj-
ect progress as accurately as possible. You can’t use the
same plan for both purposes.

 ✓ Plan in slack time. If the worst thing you do in your pro-
fessional career is come in under budget and ahead of
plan, you’ll just have to learn to live with the shame.

Adopting existing processes
There are a number of existing agile processes, including
Scrum, XP, Crystal, and Harmony. All of these are generic in
that they apply to different kinds of systems, and all of them
are incomplete in that they don’t take into account the pecu-
liarities of your specific organization, project, or product.

Agile Product Development For Dummies, IBM Limited Edition 26

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For example, Scrum is currently the most widely used agile
process, but the Scrum literature doesn’t address the needs
of safety critical systems or hardware‐software integration.
Harmony focuses on critical embedded systems but doesn’t
provide guidance on creating enterprise architectures. XP
focuses on the technicalities of software development and
doesn’t provide guidance on project management.

Select a base process that closely aligns with your business
culture, industry, and projects, and tailor it to your organiza-
tion. List only the relevant aspects for your specific project.

Tool Support in Agile
Product Planning

Many tools exist that can be applied to agile planning. IBM
Rational Team Concert provides collaborative planning and
management capabilities, including work item management
and import of process tasks from the IBM process definition
tool, IBM Rational Method Composer. Furthermore, Rational
Team Concert integrates with other IBM and third‐party tools,
covering many aspects of the development life cycle, includ-
ing requirements management, modeling and simulation, and
quality management. This allows agile planning and workflow
management to be linked to engineering processes to provide
clear information for project managers and practitioners.

Agile Requirements
Management and Traceability

Engineers adopting agile may be tempted to eliminate or
heavily reduce requirements management; however, require-
ments are critical to successful agile delivery. A key function
of requirements is to maintain a common understanding
between the customer and the project team, which is vital for
successfully planning and managing both the project and the
product being developed. Agile emphasizes improving col-
laboration between stakeholders, which makes requirements
management more rather than less important.

 Chapter 4: Doing it Agile 27

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For all but the most trivial projects, requirements rapidly
become hard to manage in text documents and spreadsheets.
Consider using a requirements management tool that allows
individual requirements to be managed and that can provide
access to all necessary stakeholders.

Traceability is the glue that connects different layers of
requirements and other engineering artifacts associated with
a project into a coherent structure. It provides the mechanism
to quickly and accurately assess the impact of new require-
ments or change requests, and ensure that the right artifacts
are included when implementing a particular work item or
change request. Agile emphasizes breaking large projects
down into manageable pieces and also being responsive to
change requests. This means that traceability is, if anything,
more important for agile projects.

Traceability management is a key part of a requirements man-
agement tool. It’s important, however, that creating and main-
taining traceability isn’t a difficult or time‐consuming activity
as practitioners will quickly see it as unnecessary work.

Choose a requirements management tool such as IBM
Rational DOORS/DOORS Next Generation that integrates with
other engineering tools and allows traceability to be built
in real‐time as engineering artifacts (requirements, models,
tests, and so on) are created and maintained.

Agile High‐Fidelity Modeling
and Simulation

A key aspect of agile software development is the continuous
engineering practice of continuous verification. This takes
place primarily in two practices: Test Driven Development
and Continuous Integration. The first of these develops and
applies test cases as the software is developed to ensure that
defects aren’t “designed in.” The second practice continuously
integrates software from multiple developers to ensure that
it all plays together; this avoids the typically huge integration
expense and effort at the end of the traditionally run projects.
In both cases, continuous verification is the key to avoiding
rework, achieving timely product delivery and generating high
software quality. These practices work well because software
implementation is inherently executable and therefore testable.

Agile Product Development For Dummies, IBM Limited Edition 28

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In agile product development, you don’t just produce soft-
ware implementation. You produce many different kinds of
engineering data, including system requirements, interface
specifications, architectures, and safety, reliability, and secu-
rity analyses. You must, therefore, address the question as to
how to ensure the high quality of this engineering data, much
of which isn’t traditionally testable.

The answer is models and not simply models, but high‐fidelity
testable models that can be verified as to their correctness,
completeness, consistency, and accuracy.

Modeling is the language of
product architecture and design
A model is a semantic web of interconnected elements in
which you omit details irrelevant to the purpose of the model
and focus on details that are important to the reasoning you
want to perform. You model a chair differently if you want to
reason about its construction versus its different uses in vari-
ous environments versus coordinated office décor. It’s all the
same chair, but you create models that allow you to capture
and reason about details relevant to your needs.

Every (good) model has the following properties:

 ✓ Purpose: What reasoning is the model meant to support
and what questions is it meant to answer?

 ✓ Scope: What are the rules for deciding what should be
included in this model?

 ✓ Precision: What degree of detail is required of the ele-
ment definitions to achieve the model’s purpose?

 ✓ Accuracy: How accurate must the detail be to achieve
the purpose of the model?

 ✓ Views: What views (such as diagrams) support the pur-
pose of the model?

 ✓ Stakeholders: Who is to create the model, and who will
view or analyze the information held within?

 Chapter 4: Doing it Agile 29

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Models are not diagrams. Models are the data that may be
represented in diagrams; diagrams are simply views of the
model. High‐fidelity models contain precise enough state-
ments about the things being modeled that the information
and conclusions are verifiable.

In agile product development, models are built to

 ✓ Capture and understand requirements

 ✓ Represent system architecture

 ✓ Depict interfaces between large scale pieces of the
system

 ✓ Show allocations of requirements to system elements

 ✓ Depict interfaces between different engineering disci-
plines

 ✓ Define the interactive or singular behavior of system
 elements

For example, Figure 4-1 shows a state machine that represents
the requirements for a use case. Each state, event, and action
represents one or more requirements. This provides you
with a precise language in which you can state what you want
the system to do for this use case. In this usage, we’ve taken
ambiguous textual statements and constructed a formal state-
ment about how the system responds to user input actions
for setting different parameter values that control the delivery
of medical ventilation.

Figure 4-1: A use case requirements model.

Agile Product Development For Dummies, IBM Limited Edition 30

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Agile model construction
A key agile practice is to construct complex things in small
steps, verifying continuously the correctness of what you’re
creating. Modeling isn’t different. You construct potentially
complex models, a little bit at a time, verifying the correct-
ness of the model before you add more detail. In this way,
you avoid defects and improve the quality of the information
being modeled.

Figure 4-2 shows the workflow from the Harmony Agile Model‐
Based Systems Engineering process for the analysis of system
requirements. In it you see that you define some portion of
the functional flow (normally on SysML Activity Diagrams),
then derive specific scenarios of interest (on sequence dia-
grams), then construct/update a simulation environment,
define the state machine, and verify the model. Because this is
done a bit at time — usually 2 to 5 requirements — the cycle
is very rapid, and the model can be simulated quickly and
easily. Once the model is correct, you can add the next couple
of requirements and repeat. During these nanocycles —
 typically 20 to 60 minutes in duration — it is likely that miss-
ing or incomplete requirements are identified and repaired,
greatly improving the quality of the requirements.

De�ne Use-Case System Context

Derive Use-Case Functional Flow

De�ne Use-Case Scenarios

De�ne Ports and Interfaces Derive Use-Case State Behavior

Verify and Validate Functional Requirements

Add Traceability Links

[more reqs] [else]

Perform Review

Nanocycle development of
use case performs this
cycle in iterations lasting
20–60 minutes and verifying
the use case and updating
the textual requirements

Figure 4-2: The requirements analysis workflow.

 Chapter 4: Doing it Agile 31

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Simulation enables continuous
verification
A key feature of high‐fidelity models is that they can be
executed (simulated). You can then test to ensure the model
is properly specifying what you think it’s specifying —
 something not possible with natural language.

A test case is a specification of input events with specific
values for data and flows that occur with a specific sequence
and timing and have a measurable defined output or outcome.
A model that can be simulated can be verified by developing
test cases that assert qualities of the data represented by the
model.

Almost all engineering data can be specified in languages
more formal than natural language, such as SysML or UML.
Such specification models can then be verified, using the
standard agile practices of Test‐Driven Development and
Continuous Integration to ensure their quality. This is crucial
for effective agile product development.

The best way to know your engineering data is correct is to
verify it as you construct the model of it. This requires pre-
cise executable models, such as those that can be created
with SysML or UML.

Agile Quality Management
and Test

Verification in product development comes in two forms.
Syntactic verification ensures that the engineering data is well‐
formed; it complies with standards governing its organization
and scope. Semantic verification is what you normally think of
as verification — the data makes sense, is correct, and is suf-
ficiently accurate and complete. The techniques for semantic
verification include review, testing, and formal methods.

For engineering data beyond software implementation, review
is by far the most common — and weakest — way of perform-
ing semantic verification. Testing requires executability, and
this means the models must be more formal.

Agile Product Development For Dummies, IBM Limited Edition 32

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous verification in
product development
Test early — test often. One of the keys to effective agile prod-
uct development is continuous verification of both the prod-
uct and other engineering data. Requirements, architectures,
interfaces, safety analyses — all these sets of engineering data
are valuable to the extent that they’re complete and correct.
And that means that you — as engineers — must verify the
engineering data is correct.

If you want to use testing as your primary verification
approach, this means that you must produce models that are
precise enough to support testing. Almost all engineering data
can be modeled to support verification through simulation.

Simulation and test
The UML Testing Profile defines the means by which models
can be specified by using UML (it also works with SysML)
and how tests can be run. The IBM Rhapsody tool supports
this standard with the Rhapsody TestConductor Add On.
You can specify test cases with sequence, activity, or state
diagrams to be applied to models. If you’re using a tool such
as Rhapsody, that means that you can construct high‐fidelity
models, debug them using simulation, and formally test them
with TestConductor. This process assures that the data in the
models is right, and subsequent engineering tasks based on
that data have a high‐quality foundation on which to begin.

You can test requirement sets by building executable models
and then running them to evaluate what you have specified in
various scenarios of use. The result is that you hand off much
higher quality requirements to the designers. You can test
architecture to ensure that all the requirements have been
properly and consistently allocated in the system structure, and
that the interfaces support all the necessary functionality. You
can test designs to ensure they comply with their requirements
and achieve the necessary functionality and performance.

It’s even possible to perform multi‐modal co‐simulation, inte-
grating a variety of different models types into a single envi-
ronment for verification. This is possible with the Functional
Mockup Interface (FMI) specification. Rhapsody supports FMI,

 Chapter 4: Doing it Agile 33

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

so it’s possible to build a single simulation that integrates
UML for the software, SysML for the systems model, Simulink
for the control model, and SimulationX for the mechanical
physics model.

Test management with changing
requirements
Test cases ensure the system behaves appropriately in vari-
ous circumstances, environments and with various inputs,
timing, and sequences. In addition to test cases, supporting
structures — called test fixtures — must be constructed to
support testing. These may be simulations of external sys-
tems not yet available, platforms that assist in test execution,
or systems that provide insight into system operation and
outcomes during test case execution. In principle, test cases
should be developed in conjunction with the requirements,
and in fact, can even be thought of as an expression of the
requirements they verify. As such, it’s crucial that as require-
ments change, the test cases change along with them.

With traceability among the requirements, test cases, and
implementation (software, electronics, mechanics, and
integrated systems), if any of these items change, you can
perform impact analysis and updates to ensure the consis-
tency of the entire engineering data. Sometimes the imple-
mentation may change, and this can propagate change to the
 requirements and test cases as well.

Connecting Product Development
to the IoT Cloud

In the agile product development, you focus on the “T” in the
Internet of Things (IoT). Almost as important is the “I” — the
interconnection of these devices. This is most commonly
done with cloud services to integrate the data from many
(possibly very many) devices. As devices register with your
cloud, you gain unprecedented abilities to understand, ana-
lyze, control, and modify the behavior of all those devices
within your purview. Consumers gain new, network‐derived
services that weren’t previously possible, easier product

Agile Product Development For Dummies, IBM Limited Edition 34

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

updates and more automation of product service and main-
tenance. Vendors gain the ability to identify detailed usage
patterns and trends that can inform product updates and new
versions, deliver new value‐added services, and spot systemic
problems and address them before they manifest. Continuous
engineering aligns product development to the needs and
opportunities of a connected world. It relies on agile’s respon-
siveness to change to enable product development to make
use of insights delivered from products in use.

Throughout all this, security is absolutely critical to the suc-
cess of modern interconnected products. Security can be
defined as the absence of intrusion, interference, or theft and
is a serious cyberphysical concern. This means that not only
must you pay attention to secure coding practices but also
you must apply holistic security thinking to product devel-
opment. This means that much like safety analysis in safety
critical systems, security must be ever in your mind through-
out the product development process. You must think about
security requirements, security analysis, secure architectures,
security design patterns, secure implementation, and security
testing.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Scaling Agile Product
Development

In This Chapter
▶▶ Introducing the Scaled Agile Framework (SAFe)

▶▶ Recognizing the value and challenges of tooling when scaling agile

▶▶ Discovering the benefits of Open Services for Lifecycle Integration

▶▶ Aligning the enterprise-to-agile culture

▶▶ Getting buy‐in across the organization

▶▶ Getting started with a pilot project

▶▶ Using an agile process to adopt agile

H
istorically, agile methods have been applied to small
co‐located teams working on small projects. Certainly,

almost all the agile development literature supports that
statement. Organizations building far larger systems — such
as medical equipment, automobiles and even airplanes —
want to reap the benefits of agile product development as
well. As a result, there’s a growing body of thought — along
with overarching processes, guidance, and training — that
deals with applied agile in the large. With one notable excep-
tion, almost all of this work is still solely focused on agile
software development, including the Scaled Agile Framework
(SAFe). However, recently the Scaled Agile Framework for
Lean Systems Engineering (SAFe LSE) has appeared and
addresses some of the issues surrounding larger scale devel-
opment of products implemented with multiple engineering
disciplines. In addition, IBM’s continuous engineering initia-
tive addresses the larger scope as well. These two approaches
are quite compatible and integrate well with the other tech-
niques discussed in this book.

Chapter 5

Agile Product Development For Dummies, IBM Limited Edition 36

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Scaled Agile Framework (SAFe)
The scope of the vast majority of agile literature is in the daily
running of software development projects. Scrum is the most
common such approach, but a number of alternatives exist
as well. This is just one of the parts of running the enterprise
dealt with by SAFe.

SAFe goes beyond the daily running of software development
projects by integrating practices together in a larger business
scope — the scope of the enterprise. Beyond the straightfor-
ward application of Scrum to daily software development,
SAFe adds support for agile teams, agile architecture, sprint
goals, spikes, and refactoring.

SAFe also introduces the topics of project management,
system teams, release management, product vision, program
epics, and product roadmaps. The results are what is referred
to as the Agile Release Train — the series of incremental prod-
uct releases, the roles necessary to pull that off, and the guid-
ing principles.

Beyond that, SAFe brings product portfolio vision to bear, at
the upper levels of the enterprise. This includes applying lean
methods (which have to do with minimizing waste), Kanban
(a scheduling technique applied to lean systems for just‐in‐
time production), enterprise‐width strategic themes, and
epics.

In short, SAFe is a framework in which compatible agile and
lean methods are combined to address the issues of devel-
oping many products simultaneously within the context of
an enterprise. While SAFe is fundamentally concerned with
software development, the Scaled Agile Framework for Lean
Systems Engineering (SAFe LSE) broadens the scope of SAFe
to include systems engineering and multi‐discipline product
development, adding adaptive requirements and design,
MBSE, and set‐based design.

Continuous engineering and SAFe aren’t incompatible.
Continuous engineering focuses on the detailed practices
of how to accomplish engineering workflows, whereas SAFe
focuses on the big (enterprise) level exclusively. So you don’t
have to make a choice between continuous engineering and
SAFe.

 Chapter 5: Scaling Agile Product Development 37

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Tooling for the Large Scale
Any large scale adoption of agile product development prac-
tices is going to require tooling — tools that enable people
in different geographical locations to work together, that
allow the engineering information associated with the differ-
ent development activities to be managed and maintained,
and that allow for efficient reporting and insight into project
status. Agile techniques emphasize collaboration between
all stakeholders, including between customers and project
teams, and the different engineering disciplines and practitio-
ners responsible for the different activities of development.
So it’s vital to support collaboration with an effective agile
tooling solution.

The need for collaboration between different geographical
locations is a familiar problem and can typically be met with
web‐based and cloud‐based tools. However, the need for col-
laboration across different engineering activities presents a
different challenge. Here, integration between different tools
is required, allowing information to be shared and linked. In
fact, integration is a vital underpinning of traceability, which
is key to successful agile product development (check out
Chapter 4 for more info). Traditionally, integrations between
tools, such as requirements management, modeling and simu-
lation, and planning and workflow management, have been
through dedicated point‐to‐point links. However, this kind of
integration strategy is far from ideal. Typically integrations
are specified for particular versions of the tools they’re link-
ing. If both tools are from the same vendor this may be okay,
but integrations can often be a maintenance nightmare if any
of the tools are patched or upgraded. Also point‐to‐point inte-
grations link just two tools so they don’t tackle the problem
of providing truly cross‐project access to information without
adding more layers of complexity.

OSLC and Enterprise‐Wide
Agility

Open Services for Lifecycle Integration (OSLC) is a set of
non‐proprietary specifications for integrating development
tools intended to make life easier for tool users. Integration

Agile Product Development For Dummies, IBM Limited Edition 38

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

functionality is based on publicly available specifications,
offering a number of benefits:

 ✓ Tools from different vendors can be integrated as long as
they each support the relevant OSLC specification.

 ✓ Integrations are at much less risk of breaking with tool
version upgrades or patches.

 ✓ Multi‐tool integrations can yield more functionality than
point‐to‐point integrations.

The last bullet is especially interesting from the agile product
development perspective. By integrating tools across different
engineering activities — such as agile work item management,
requirements, modeling and simulation, quality management,
and change and configuration management — you can gain
new insight on engineering information.

Tools such as IBM Rational Engineering Lifecycle Manager
can help engineers quickly visualize the traceability between
all the engineering artifacts associated with an engineering
change or backlog item, dramatically improving the respon-
siveness of the agile process. What’s more, tools such as IBM
Rational Publishing Engine can pull information from mul-
tiple tools across the life cycle, for example, to automatically
 generate documents to support compliance for critical
standards‐based projects.

Choose a vendor with strong support for OSLC across a range
of tools because it’s easier to extend your tool support to new
functionalities from the same or other vendors as your devel-
opment needs evolve.

Aligning the Enterprise
to Agile Culture

Agile product development isn’t just a technical process
that affects a few engineers — it’s a fundamental change to
the way the business approaches product development that
needs understanding and backing from across the business.
For this reason, you need to involve stakeholders throughout
the business, including engineers, operational managers, and
business management.

 Chapter 5: Scaling Agile Product Development 39

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Getting Buy‐In Across
the Organization

The key to getting the backing throughout your organization
is to make sure the benefits are understood at all levels of the
business. (Check out Chapter 1 for the benefits for the differ-
ent perspectives in the organization.)

Some organizations arrive at agile product development as a
last‐ditch initiative when their traditional processes are over-
whelmed by complexity and change. But it’s better to start
debating the benefits throughout the organization before that
situation occurs so everyone can become a stakeholder in
the success of your organization’s agile product development
initiative.

Starting Small
Many agile software initiatives started with skunkworks
projects — projects that were run under the radar of
 management — that could provide confidence in broader
agile adoption by providing a proof‐point of success. These
projects were typically small, co-located teams where the
work could be completed in a single room, which is a much
simpler context than today’s product development. For agile
product development, even at the start, you need to work
across different engineering disciplines, which typically
means across departments and management structures.

A pilot project is still a great idea, but make sure the objec-
tives, deliverables — and critical benefits — are understood
by all parties from the start.

Leveraging Support
You may already have agile embedded software develop-
ment as part of your product development. This group can be
strong advocates for agile adoption and can help with coach-
ing and mentoring the new groups adopting agile. They ben-
efit from the teams around them having an agile perspective

Agile Product Development For Dummies, IBM Limited Edition 40

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

and engaging their support could have the added benefit of
helping collaboration between software and other engineering
disciplines.

Using an Agile Process
to Adopt Agile

Making it work in a pilot is one thing; making it work across
the business is another. Although adopting agile is hard, agile
suggests an iterative and incremental approach for doing this:

 ✓ Break the problem into pieces. Identify the areas where
you want to apply agile approaches to gain benefit.

 ✓ Prioritize the pieces to identify what to do first. You
may use a number of factors including anticipated
 benefit, cost, and criticality of the activity.

 ✓ Define the success metrics. They can include time,
 productivity, quality — whatever is important to your
organization.

 ✓ Apply the agile process and measure results early and
often. If you hit problems you can implement changes
quickly until you find what works.

 ✓ When it’s working, pick the next prioritized piece and
repeat. Remember — it’s okay to reprioritize the pieces
as you learn more about your agile implementation.

An advantage of this approach is that you don’t move on until
you have some demonstrable success. So it’s less likely you
will build a debt of scepticism that things are heading for
disaster. And once your teams have experienced an agile envi-
ronment where they can be more productive and have more
control over their workflow, they’re likely to become strong
agile advocates for expanding the agile deployment.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ten Myths about Agile
Product Development

In This Chapter
▶▶ Spotting agile product development misconceptions

▶▶ Tackling the naysayers

A
gile product development offers the prize of major
improvement in the way complex products are devel-

oped. But implementing agile product development is itself a
challenge, and you should certainly consider the pitfalls. It’s
important, however, to sort the fact from the fiction that may
appear to be blocking your path. In this chapter, we debunk
some common myths about agile product development.

It’s a Fad
Agile may be new to non‐software disciplines, but it comes
with a proven decade‐and‐a‐half record in the software
domain where its use is still growing. The cost‐time‐quality‐
complexity crunch that agile addresses certainly isn’t going
to go away any time soon. In fact, as more products get ever‐
smarter, agile is likely to become more necessary than ever.

It Only Works for
Simple Products

While agile can certainly be used for simple products, its real
benefits show when things are scaled up in complexity — with

Chapter 6

Agile Product Development For Dummies, IBM Limited Edition 42

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

more interdependencies, features to prioritize, and changes
to manage. In these environments, agile can help ensure that
important work is prioritized, there are fewer nasty surprises
at the end of development, and critically, what’s delivered
actually meets the customers’ needs.

It Won’t Work for
Critical Products

Some have taken agile’s “eliminate unnecessary work”
 principle to mean “don’t do documentation” — giving the
impression that agile isn’t suitable for serious development.
In fact, for high‐criticality products (which could mean safety,
financially, or availability critical), agile provides a way of
delivering what’s needed while minimising the overheads
associated with standards compliance.

It’s Unproven
Agile has been in use and growing in popularity for software
development for at least a decade and a half. In recent years,
there has been intense interest in both agile systems engi-
neering and agile product development, and there are plenty
of companies across many industries that have successfully
applied agile in these areas.

It’s Just a Technical
Delivery Process

The detailed work of agile product delivery processes may
be enacted by engineering practitioners, but because the
process requires collaboration across the organization, agile
adoption must be supported by both project and senior man-
agement. Check out Chapter 1 for the benefits for all these
stakeholders.

 Chapter 6: Ten Myths about Agile Product Development 43

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

It Can’t Work for Non‐Software
Engineering Teams

Agile was originally created for software development
because it faced the cost‐time‐quality‐complexity crunch
before the rest of product development. But agile’s tenets
and principles aren’t restricted to software development as
long as the processes are applied intelligently to the needs
of product development. The key step is for stakeholders to
understand the benefits and to buy‐in to adoption.

Quality Will Drop
Agile product development is focused on delivering working
outputs. So what’s delivered will be of high quality. Because
agile prioritizes and delivers the maximum output within the
constraints of time and resources, an agile product develop-
ment approach delivers more high-quality output than a non-
agile (but over-optimistic) project.

The Business Won’t Know When
Products Will Be Delivered

Development is inherently uncertain and many non‐agile
projects end up missing their delivery dates due to late‐
discovered problems when everything is integrated at the
end. Agile is adaptive in both how much it delivers and how
long it takes to deliver and constantly improve its prediction
of how much can be delivered and when. Because agile is
focused on optimizing productivity, the answer to “how long?”
is likely to be “sooner than a non‐agile project.”

The Business Won’t Know How
Much Development Will Cost

Agile is adaptive and optimizing, so it’s likely to be able to
save cost over a non‐agile program. It’s also less likely there

Agile Product Development For Dummies, IBM Limited Edition 44

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

will be cost‐overruns at the end of the project because each
incremental piece is proven to be correct instead of waiting to
the end of the project to see if the final product works.

We Don’t Need to Change
For many companies, the old ways of doing things have been
under strain for some time. But implementing agile product
development isn’t trivial, so we wouldn’t suggest that you
consider it if it wasn’t essential. Product development has
now hit its cost‐time‐quality‐complexity crunch and for many
companies there’s no alternative but to change. For those that
don’t, they risk losing the competitive edge.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book

	Chapter 1 Why Agile Product Development?
	A Brief History of Products
	The Rise of the Internet of Things
	Continuous Engineering for the Internet of Things
	Defining Agile — the Agile Manifesto
	Reinventing Agile for Product Development
	Applying Agile to Product Development
	What’s In It for Me?

	Chapter 2 Understanding Agile Product Line Engineering
	Increasing Competitive Pressure
	What is PLE?
	Core PLE Needs
	Strategy
	Interconnected engineering repositories
	Traceability
	Great configuration management

	Techniques of Variant Management
	Clone and own
	Multi‐stream
	Product parametrics
	Feature management

	Chapter 3 Agile Systems Engineering
	Digging into the Challenges of Systems Engineering
	System requirements specification
	System functional analysis
	System dependability analysis
	Creation of a system architecture
	Allocation of requirements to subsystems
	Create hand-off specifications for downstream engineering

	Agile Practices for Systems Engineering
	Early verification of specifications
	Test-Driven Development
	Model‐Based Engineering
	Incremental development
	Continuous integration

	Chapter 4 Doing it Agile
	Agile Planning and Management
	Plans are good (just don’t believe ’em!)
	Plan to replan
	Adopting existing processes

	Tool Support in Agile Product Planning
	Agile Requirements Management and Traceability
	Agile High‐Fidelity Modeling and Simulation
	Modeling is the language of product architecture and design
	Agile model construction
	Simulation enables continuous verification

	Agile Quality Management and Test
	Continuous verification in product development
	Simulation and test
	Test management with changing requirements

	Connecting Product Development to the IoT Cloud

	Chapter 5 Scaling Agile Product Development
	Scaled Agile Framework (SAFe)
	Tooling for the Large Scale
	OSLC and Enterprise‐Wide Agility
	Aligning the Enterprise to Agile Culture
	Getting Buy‐In Across the Organization
	Starting Small
	Leveraging Support
	Using an Agile Process to Adopt Agile

	Chapter 6 Ten Myths about Agile Product Development
	It’s a Fad
	It Only Works for Simple Products
	It Won’t Work for Critical Products
	It’s Unproven
	It’s Just a Technical Delivery Process
	It Can’t Work for Non‐Software Engineering Teams
	Quality Will Drop
	The Business Won’t Know When Products Will Be Delivered
	The Business Won’t Know How Much Development Will Cost
	We Don’t Need to Change

	EULA

